Abstract

With the increasing demand for mobile Internet access, WLAN virtualization is becoming a promising solution for sharing wireless infrastructure among multiple service providers. Unfortunately, few mechanisms have been devised to tackle this problem and the existing approaches fail in optimizing the limited bandwidth and providing virtual networks with fairness guarantees. In this paper, we propose a novel algorithm based on control theory to configure the virtual WLANs with the goal of ensuring fairness in the resource distribution, while maximizing the total throughput. Our algorithm works by adapting the contention window configuration of each virtual WLAN to the channel activity in order to ensure optimal operation. We conduct a control-theoretic analysis of our system to appropriately design the parameters of the controller and prove system stability, and undertake an extensive simulation study to show that our proposal optimizes performance under different types of traffic. The results show that the mechanism provides a fair resource distribution independent of the number of stations and their level of activity, and is able to react promptly to changes in the network conditions while ensuring stable operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.