Abstract
Providing an adequate long-term participation incentive is important for a participatory sensing system to maintain enough number of active users (sensors), so as to collect a sufficient number of data samples and support a desired level of service quality. In this work, we consider the sensor selection problem in a general time-dependent and location-aware participatory sensing system, taking the long-term user participation incentive into explicit consideration. We study the problem systematically under different information scenarios, regarding both future information and current information (realization). In particular, we propose a Lyapunov-based VCG auction policy for the on-line sensor selection, which converges asymptotically to the optimal off-line benchmark performance, even with no future information and under (current) information asymmetry. Extensive numerical results show that our proposed policy outperforms the state-of-art policies in the literature, in terms of both user participation (e.g., reducing the user dropping probability by 25% to 90%) and social performance (e.g., increasing the social welfare by 15% to 80%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.