Abstract

BackgroundHealth Data Science (HDS) is a novel interdisciplinary field that integrates biological, clinical, and computational sciences with the aim of analysing clinical and biological data through the utilisation of computational methods. Training healthcare specialists who are knowledgeable in both health and data sciences is highly required, important, and challenging. Therefore, it is essential to analyse students’ learning experiences through artificial intelligence techniques in order to provide both teachers and learners with insights about effective learning strategies and to improve existing HDS course designs.MethodsWe applied artificial intelligence methods to uncover learning tactics and strategies employed by students in an HDS massive open online course with over 3,000 students enrolled. We also used statistical tests to explore students’ engagement with different resources (such as reading materials and lecture videos) and their level of engagement with various HDS topics.ResultsWe found that students in HDS employed four learning tactics, such as actively connecting new information to their prior knowledge, taking assessments and practising programming to evaluate their understanding, collaborating with their classmates, and repeating information to memorise. Based on the employed tactics, we also found three types of learning strategies, including low engagement (Surface learners), moderate engagement (Strategic learners), and high engagement (Deep learners), which are in line with well-known educational theories. The results indicate that successful students allocate more time to practical topics, such as projects and discussions, make connections among concepts, and employ peer learning.ConclusionsWe applied artificial intelligence techniques to provide new insights into HDS education. Based on the findings, we provide pedagogical suggestions not only for course designers but also for teachers and learners that have the potential to improve the learning experience of HDS students.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.