Abstract

In cognitive radio networks (CRNs), a rendezvous between two nodes exists when they tune to the same channel simultaneously. Rendezvous guarantee between any pair of nodes is essential because a rendezvous is a necessary condition for a communication. Several existing works claim that such a guarantee can be provided by using a dedicated common control channel for channel negotiation. A serious problem of these mechanisms is that a globally available channel may not exist. Some channel hopping protocols try to provide rendezvous guarantee without using a common control channel. However, these solutions may suffer from low number of rendezvous and uneven channel utilization. In this paper, we propose a novel distributed channel hopping protocol called Quorum and Latin Squares Channel Hopping, QLCH. QLCH efficiently provides rendezvous guarantee by utilizing the concept of quorum systems and latin squares. The former is utilized to guarantee rendezvous while the latter is adopted to share the rendezvous among channels. Simulation results verify that the proposed QLCH protocol performs better in terms of network throughput and time to rendezvous when compared to existing protocols, L-QCH, ACH, and SYNC-ETCH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call