Abstract

We propose and analyze a methodology for providing absolute differentiated services for real-time applications in networks that use static-priority schedulers. We extend previous work on worst-case delay analysis and develop a method that can be used to derive delay bounds without specific information on flow population. With this new method, we are able to successfully employ a utilization-based admission control approach for flow admission. This approach does not require explicit delay computation at admission time and hence is scalable to large systems. We assume the underlying network to use static-priority schedulers. We design and analyze several priority assignment algorithms, and investigate their ability to achieve higher utilization bounds. Traditionally, schedulers in differentiated services networks assign priorities on a class-by-class basis, with the same priority for each class on each router. We show that relaxing this requirement, that is, allowing different routers to assign different priorities to classes, achieves significantly higher utilization bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.