Abstract

In this study, two mathematical models have been developed for assigning emergency vehicles, namely ambulances, to geographical areas. The first model, which is based on the assignment problem, the ambulance transfer (moving ambulances) between locations has not been considered. As ambulance transfer can improve system efficiency by decreasing the response time as well as operational cost, we consider this in the second model, which is based on the transportation problem. Both models assume that the demand of all geographical locations must be met. The major contributions of this study are: ambulance transfer between locations, day split into several time slots, and demand distribution of the geographical zone. To the best of our knowledge the first two have not been studied before. These extensions allow us to have a more realistic model of the real-world operation. Although, in previous studies, maximizing coverage has been the main objective of the goal, here, minimizing operating costs is a function of the main objective, because we have assumed that the demand of all geographical areas must be met.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.