Abstract

The petrography, as well as the major, trace and rare earth element compositions of ten (10) sandstone samples of Maastrichtian Afowo Formation exposed near Igbile, Southwestern Nigeria, have been investigated to determine their provenance, source area weathering conditions, paleoclimate and tectonic setting using petrographic analysis and Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). Results of the petrographic analysis revealed that quartz is the most dominant detrital mineral with (86%) followed by weathered plagioclase feldspar (5.10%) and rock fragments (10.9%). The quartz grain is sub-angular to sub-rounded in shape and the sandstones were classified as quartz arenites, sublitharenites and subarkoses based on framework composition of quartz, feldspar and rock fragment plots. This suggests a recycled orogen source for the sandstones and deposition in a humid climate, evidenced by the weathered feldspars. Eleven (11) major, seventeen (17) trace and fourteen (14) rare earth elements were obtained from the geochemical analysis. The major elements values range in concentration from 0.01%–81.39% with SiO2 being the dominant oxide followed by Al2O3 and Fe2O3 constituting over 95% of the major oxides; K2O, TiO2, Na2O, CaO, MgO and P2O5 made up the remaining 5%. The average ratio of SiO2/Al2O3 valued 4.31 for the sandstone is appreciably high indicating that it has been heavily weathered. The trace elements range in concentration from 0.2 ppm–1651.2 ppm with Zr being the most dominant element an indication of orogenic recycling. The rare earth elements range in concentration from 0.01 ppm–163.7 ppm with Ce having the highest concentration, depicting that the sandstones were deposited in an oxidizing environment. Also, the trace element relationship illustrated from the spider plot shows chemical coherence and uniformity of the sandstones. The chondrite normalized rare earth elements (REE) plot shows enrichment in the Light REE over the heavy REE for the sediment with strong negative Eu anomaly values between (0.57–0.69) suggesting a felsic provenance derived from upper continental crust for the sandstones.

Highlights

  • The Precambrian domain of West Africa accommodates important Phanerozoic depositional sites

  • The petrography, as well as the major, trace and rare earth element compositions of ten (10) sandstone samples of Maastrichtian Afowo Formation exposed near Igbile, Southwestern Nigeria, have been investigated to determine their provenance, source area weathering conditions, paleoclimate and tectonic setting using petrographic analysis and Inductively Coupled Plasma - Mass Spectrometry (ICP-MS)

  • The quartz grain is sub-angular to sub-rounded in shape and the sandstones were classified as quartz arenites, sublitharenites and subarkoses based on framework composition of quartz, feldspar and rock fragment plots

Read more

Summary

Introduction

The Precambrian domain of West Africa accommodates important Phanerozoic depositional sites Among the latter is the Dahomey basin a coastal sedimentary basin which covers much of the continental margin of the Gulf of Guinea. It extends from the Volta Delta in Ghana in the west to the Okitipupa ridge in Nigeria in the east. The study of sedimentary provenance interfaces several of the mainstream geological disciplines and it includes the location and nature of sediment source areas, the pathways by which sediment is transferred from source to basin of deposition, and the factors that influence the composition of sedimentary rocks (e.g., relief, climate, tectonic setting). Information on transport history, paleoenvironment of www.ccsenet.org/jgg

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call