Abstract
The Nonacho Group comprises six formations of continental clastic rocks that were deposited between 1.91 and 1.83 Ga. The Nonacho Group is part of a broader assemblage of conglomerate and sandstone that was deposited atop the Rae craton in response to the amalgamation of Laurentia and supercontinent Nuna, but the details of its tectonic setting are contentious. This paper documents an outlier of Nonacho Group rocks ∼50 km east of the main Nonacho basin. Field observations and LA-ICPMS (laser ablation inductively coupled plasma mass spectrometry) U-Pb detrital zircon geochronology are integrated with previous studies of the main basin to better understand the group’s depositional history, provenance and tectonic setting. The lithology and detrital zircon age spectra of the outlier allow for its correlation to the upper two formations of the Nonacho Group. CA-ID-TIMS (chemical abrasion isotope dilution thermal ionization mass spectrometry) analyses of two fragments of the youngest detrital zircon provide a maximum depositional age of 1901.0 ± 0.9 Ma. A felsic volcanic cobble dated at ca. 2.38 Ga provides evidence of volcanism during the Arrowsmith orogeny. Detrital zircon dates recovered from the outlier (ca. 3.4–3.0, 2.7, 2.5–2.3 and 2.0–1.9 Ga) are consistent with derivation from topography of the Taltson and/or Thelon orogens on the western margin of the Rae craton. Taltson-Thelon (2.0 to 1.9 Ga) aged detritus is only abundant in the upper two formations of the Nonacho Group, marking a change in provenance from the lower formations. This change in provenance may have coincided with a period of renewed uplift and the unroofing of Taltson-Thelon plutons. The detrital zircon provenance and depositional age of the Nonacho Group is consistent with models that link its deposition to the Taltson and/or Thelon orogens. However, tectonism associated with the 1.9 to 1.8 Ga Snowbird and Trans-Hudson orogens to the east could also have affected basin formation or the change in provenance from the lower to upper Nonacho Group. This study highlights the importance of CA-ID-TIMS in establishing accurate and precise maximum depositional ages for sedimentary successions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.