Abstract

The Cambrian Maotianshan Shale in Yunnan Province, China contains the well-preserved soft-body fossils of the Chengjiang Biota. The high quality preservation of the non-mineralizing biota (soft tissues and whole carcasses) shows regional and temporal differences, suggesting that paleogeography and local environmental conditions might have contributed to the taphonomy of these fossils. In this paper we present new results from petrographic, geochemical and detrital zircon analyses, and provide a new interpretation about the provenance of the Maotianshan Shale, as well as add to the understanding of the paleogeography of the South China Block during the Cambrian Stage 3. Results from petrographic analysis indicate that the provenance of the Maotianshan Shale is a recycled orogen overall, bordering the western and southwestern margin on the Yangtze Block. The most likely source of the terrigenous material is an exhumed area extending from the Kangdian paleoland to the southeast, paralleling the Song Ma fault zone. Minor regional differences in geochemical and petrographic proxies between the northwestern Jianshan/Ercai area and the southeastern Maotianshan/Xiaolantian area suggest influence of local sources. Sediments of the southeastern province are less mature and samples include minor elements commonly associated with mafic sources. Sediments from the northwestern province are more mature, largely lack mafic components and are enriched in Zr and Hf. The major population of the Maotianshan Shale detrital zircons group at ~800Ma. This crystallization age matches well with the age of a widely spread felsic volcanic and intrusive event associated with the Neoproterozoic Kangdian rift, suggesting that these igneous rocks are most likely a major provenance for the Maotianshan sediments. The youngest zircon population yields consistent Concordia ages of ~520Ma, representing a maximum age constraint on the timing of deposition of the Maotianshan Shale. The zircon crystals of the ~520Ma populations are euhedral with magmatic zoning, indicative of short-distance transport. Volcanic activity along the Song Ma suture zone is a potential source for the ~520Ma detrital zircon suite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call