Abstract

Petrographic and geochemical data were combined in order to decipher the petrogenesis of the Neoproterozoic sedimentary succession associated with the Banana Zone Cu-Ag mineralisation (northwest Botswana), in the Kalahari Copperbelt. The investigated Neoproterozoic sedimentary succession is composed of two formations including the Ngwako Pan and the D'kar Formations. The Ngwako Pan Formation is made up of continental siliciclastic sediments, mainly sandstones interbedded with siltstones and mudstones, whereas the D'kar Formation is comprised of shallow marine laminated siltstones, sandstones and mudstones, with subordinate limestone. Copper-Ag mineralisation is essentially confined at the base of the D'kar Formation, which bears reduced organic components, likely to have controlled Cu-Ag precipitation.Sandstones of both the Ngwako Pan and the D'kar Formations are arkoses and subarkoses, composed of quartz (Q), feldspars (F) and lithic fragments (L). Moreover, geochemically the sandstones are considered as potassic and classified as arkoses. On the other hand, mudrocks of the D'kar Formation are finely laminated and are dominated by muscovite, sericite, chlorite and quartz.The modified chemical index of weathering (CIW′) values indicated an intense chemical weathering of the source rock. The dominance of detrital quartz and feldspar grains coupled with Al2O3/TiO2 ratios (average 29.67 and 24.52 for Ngwako Pan and D'kar Formations, respectively) and Ni and Cr depletion in the sandstones, suggest a dominant felsic source. However, high concentrations of Ni and Cr and a low Al2O3/TiO2 ratio (<20) in the mudrocks of the D'kar Formation indicate a mixed source. Provenance of the investigated sandstones and mudrocks samples is further supported by the REE patterns, the size of Eu anomaly as well as La/Co, Th/Co, Th/Cr and Cr/Th ratios, which show a felsic source for the sandstones of both the Ngwako Pan and D'kar Formations and an intermediate source for the mudrocks of the D'kar Formation. Detrital modes (QFL diagrams) and geochemical characteristics of the sandstones of both the Ngwako Pan and D'kar Formations indicate that the detritus were probably supplied from a heavily weathered felsic continental block and deposited in a continental rift setting (passive margin) in a humid environment. The source rocks might have been the Palaeoproterozoic basement rocks (granitoids and granitic gneiss) and the Mesoproterozoic Kgwebe volcanic rocks exposed north of the study area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call