Abstract
The Muang Xai Basin, located in northern Laos, is associated with the Simao, Vientiane, and Khorat Basins. The paleogeographic link of these basins has not been investigated in great detail; thus, the investigation presented in this study is a comprehensive analysis of petrology, whole-rock geochemistry, and detrital zircon U–Pb chronology used to characterize the provenance of the Muang Xai Basin. Results suggest that the sedimentary source includes felsic rocks from an active continental margin or continental arc with minor amounts of recycled passive continental margin sediments. Sandstones of the Muang Xai Basin contain detrital zircons with varying U–Pb peak ages. The youngest age peak of all the zircons is 103 Ma, which limits the age of the Mesozoic strata to the Late Cretaceous. Detrital zircon U–Pb and trace element data, combined with geochemical result, reveal that the pre-Ordovician zircons were derived from recycled sediments of the Yangtze Block, which are originally sourced from the Qinling Orogenic belt. This provenance is shared with coeval sediments in the Simao and Khorat Basins, while magmatic rocks of the Ailaoshan, Truong Son Belt, and Lincang terrane are responsible for zircons of 416–466 and 219–308 Ma in age. Zircons of 101–110 and 149–175 Ma in age were sourced from magmatic rocks of the southwestern South China Block and northern Vietnam. These provenance results suggest that sediments flow into the Khorat red beds was likely from the Great Simao Basin and northern Vietnam, and not directly from the Yangtze Block.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.