Abstract
In a previous paper, we have showed how to obtain sequences of number proved random. With this aim, we used sequences of noises yn such that the conditional probabilities have Lipschitz coefficients not too large. We transformed them using Fibonacci congruences. Then, we obtained sequences xn which admit the IID model for correct model. This method consisted to value the work of Marsaglia in order to build his CD-ROM. But we did not use Rap Music (as Marsaglia), but texts files. This method also uses an extractor and at the same time the notion of correct models. In this paper, we apply this method to numbers provided by machines or chips. Unfortunately, it is less sure than they have Lipschtiz coefficient not too large. But we can solve this problem: it suffices to use the Central Limit Theorem. We do it modulo 1. In this case, we use a new limit theorem, the XOR Limit theorem : asymptotic distribution of sum of random vectors modulo 1 are asymptotically independent. Then Lipschtiz coefficient of associated sequences are not too large and we can obtain IID sequences by using Fibonacci congruences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.