Abstract

A timed-release cryptosystem allows a sender to encrypt a message so that only the intended recipient can read it only after a specified time. We formalize the concept of a secure timed-release public-key cryptosystem and show that, if a third party is relied upon to guarantee decryption after the specified date, this concept is equivalent to identity-based encryption; this explains the observation that all known constructions use identity-based encryption to achieve timed-release security. We then give several provably-secure constructions of timed-release encryption: a generic scheme based on any identity-based encryption scheme, and two more efficient schemes based on the existence of cryptographically admissible bilinear mappings. The first of these is essentially as efficient as the Boneh-Franklin Identity-Based encryption scheme, and is provably secure and authenticated in the random oracle model; the final scheme is not authenticated but is provably secure in the standard model (i.e., without random oracles).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.