Abstract
Computing sparse solutions to overdetermined linear systems is a ubiquitous problem in several fields such as regression analysis, signal and image processing, information theory and machine learning. Additional non-negativity constraints in the solution are useful for interpretability. Most of the previous research efforts aimed at approximating the sparsity constrained linear least squares problem, and/or finding local solutions by means of descent algorithms. The objective of the present paper is to report on an efficient and modular implicit enumeration algorithm to find provably optimal solutions to the NP-hard problem of sparsity-constrained non-negative least squares. We focus on the problem where the system is assumed to be over-determined where the matrix has full column rank. Numerical results with real test data as well as comparisons of competing methods and an application to hyperspectral imaging are reported. Finally, we present a Python library implementation of our algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Optimization and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.