Abstract
We investigate problems in penalized M-estimation, inspired by applications in machine learning debugging. Data are collected from two pools, one containing data with possibly contaminated labels, and the other which is known to contain only cleanly labeled points. We first formulate a general statistical algorithm for identifying buggy points and provide rigorous theoretical guarantees when the data follow a linear model. We then propose an algorithm for tuning parameter selection of our Lasso-based algorithm with theoretical guarantees. Finally, we consider a two-person “game” played between a bug generator and a debugger, where the debugger can augment the contaminated data set with cleanly labeled versions of points in the original data pool. We develop and analyze a debugging strategy in terms of a Mixed Integer Linear Programming (MILP). Finally, we provide empirical results to verify our theoretical results and the utility of the MILP strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.