Abstract

AbstractSince the appearance of public-key cryptography in the Diffie-Hellman seminal paper, many schemes have been proposed, but many have been broken. Indeed, for a long time, the simple fact that a cryptographic algorithm had withstood cryptanalytic attacks for several years was considered as a kind of validation. But some schemes took a long time before being widely studied, and maybe thereafter being broken.A much more convincing line of research has tried to provide “provable” security for cryptographic protocols, in a complexity theory sense: if one can break the cryptographic protocol, one can efficiently solve the underlying problem. Unfortunately, this initially was a purely theoretical work: very few practical schemes could be proven in this so-called “standard model” because such a security level rarely meets with efficiency. Ten years ago, Bellare and Rogaway proposed a trade-off to achieve some kind of validation of efficient schemes, by identifying some concrete cryptographic objects with ideal random ones. The most famous identification appeared in the so-called “random-oracle model”. More recently, another direction has been taken to prove the security of efficient schemes in the standard model (without any ideal assumption) by using stronger computational assumptions.In these lectures, we focus on practical asymmetric protocols together with their “reductionist” security proofs, mainly in the random-oracle model. We cover the two main goals that public-key cryptography is devoted to solve: authentication with digital signatures, and confidentiality with public-key encryption schemes.KeywordsHash FunctionEncryption SchemeSignature SchemeRandom OracleProvable SecurityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.