Abstract
We introduce PROUD, standing for PaRallel OUtlier Detection for streams, which is an extensible engine for continuous multi-parameter parallel distance-based outlier (or anomaly) detection tailored to big data streams. PROUD is built on top of Flink. It defines a simple API for data ingestion. It supports a variety of parallel techniques, including novel ones, for continuous outlier detection that can be easily configured. In addition, it graphically reports metrics of interest and stores main results into a permanent store to enable future analysis. It can be easily extended to support additional techniques. Finally, it is publicly provided in open-source.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.