Abstract
Two types of unstable growth of a precipitation layer in gel are discussed. A cation and an anion that are reactive diffuse from opposite ends of the gel to its center. A white turbid zone forms due to their reactions. When the concentration ratios for both the ions are far from stoichiometry, the turbid zone expands toward the lower-concentration side. However, when the ratio is nearly stoichiometric, unstable growth occurs. In a glass tube, a protrusion of the precipitation region from the turbid zone grows, which forms a long needle-like shape. When a free surface is present on the gel, the precipitation region protrudes from the gel surface to form a rising structure. Mapping the growing structure on a concentration diagram and using scanning electron microscopy to examine contained particles suggest that the reaction is restricted to a narrow region and the reaction product migrates through a path formed in the protrusive structure to form a bulk solid at the edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.