Abstract
Protein remote homology detection is one of fundamental research tasks for downstream analysis (i.e., protein structure and function prediction). Many advanced methods are proposed from different views with complementary detection ability, such as the classification method, the network method, and the ranking method. A framework integrating these heterogeneous methods is urgently desired to reduce the false positive rate and predictive bias. We propose a novel ranking method called ProtRe-CN by fusing the classification methods and network methods via Learning to Rank. Experimental results on the benchmark dataset and the independent dataset show that ProtRe-CN outperforms other existing state-of-the-art predictors. ProtRe-CN improves the detective performance via correcting the false positives in the ranking list by combining the heterogeneous methods. The web server of ProtRe-CN can be accessed at http://bliulab.net/ProtRe-CN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.