Abstract
AbstractThe formation of layered mounds on Mars remains a major topic of debate, with the relationship between their deposition and chemical alteration a major aspect still to be constrained. The association these deposits have with hydrated minerals indicates aqueous processes were active in their past, however the extent and duration of this aqueous period has yet to be fully realized. We studied compositional, stratigraphical, and structural characteristics of two separate layered deposits within Becquerel crater, Arabia Terra, to constrain their origins and the intensity of past aqueous activity. We find that due to key differences in composition, layering, and deformation between the two deposits, the timing of important depositional changes within Becquerel can be identified. We propose a scenario involving differences in fluid expulsion intensity and water level between the two layered deposits, in which diverse depositional and post‐depositional environments were able to form. Furthermore, internal collapsing and deformation of the main mound might reflect that fluid upwelling persisted below the mound after formation. Determining the relationship between these two deposits is an important step in unraveling the past climate of Arabia Terra, and more broadly Mars. The evidence of protracted fluid expulsion represents a unique opportunity for future missions searching for signs of past life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.