Abstract

In stratified Lake Vechten, The Netherlands, protozoan grazing was estimated on the basis of uptake of fluorescently labeled bacteria and compared with bacterial production estimated on the basis of thymidine incorporation. By using a grazer-free mixed bacterial population from the lake in continuous culture, an empirical relationship between cell production and thymidine incorporation was established. Thymidine incorporation into total cold-trichloroacetic-acid-insoluble macromolecules yielded a relatively constant empirical conversion factor of ca. 10 (range, 0.38 x 10 to 1.42 x 10) bacteria mol of thymidine at specific growth rates (mu) ranging from 0.007 to 0.116 h. Although thymidine incorporation has been assumed to measure DNA synthesis thymidine incorporation appeared to underestimate the independently measured bacterial DNA synthesis by at least 1.5- to 13-fold, even if all incorporated label was assumed to be in DNA. However, incorporation into DNA was found to be insignificant as measured by conventional acid-base hydrolysis. Methodological problems of the thymidine technique are discussed. Like the cultures, Lake Vechten bacteria showed considerable thymidine incorporation into total macromolecules, but no significant incorporation into DNA was found by acid-base hydrolysis. This applied not only to the low-oxygen hypo- and metalimnion but also to the aerobic epilimnion. Thus, the established empirical conversion factor for thymidine incorporation into total macromolecules was used to estimate bacterial production. Maximum production rates (141 x 10 bacteria liter h; mu, 0.012 h) were found in the metalimnion and were 1 order of magnitude higher than in the epi- and hypolimnion. In all three strata, the estimated bacterial production was roughly balanced by the estimated protozoan grazing. Heterotrophic nanoflagellates were the major consumers of the bacterial production and showed maximum numbers (up to 40 x 10 heterotrophic nanoflagellates liter) in the microaerobic metalimnion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.