Abstract

ABSTRACTWe demonstrate the fabrication of a three-dimensional woodpile photonic crystal in the near-infrared regime using a layer-by-layer approach involving electron-beam lithography and spin-on-glass planarization. Using this approach we have shown that we can make structures with lattice spacings as small as 550 nm with silicon as well as gold thus allowing for fabrication of photonic crystals with omnidirectional gap in the visible and near-IR. As a proof of concept we performed optical reflectivity and transmission measurements on a silicon structure which reveal peaks and valleys expected for a photonic band gap structure. The approach described here can be scaled down to smaller lattice constants (down to ∼400 nm) and can also be used with a variety of materials (dielectric and metallic) thus enabling rapid prototyping full three-dimensional photonic bandgap based photonic devices in the visible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call