Abstract

Metal foams are newly developed engineered materials with attractive mechanical properties such as lightness, high resistance-to-weight ratio, and insulation capabilities. Lately, applications of these technologies have demonstrated the possibility of obtaining high-performance sandwich panels with steel skins and metal foam core, with potential applications across various fields. Within this framework, this work aims to assess the response of sandwich panels made of steel and aluminium foam to develop a new system of dry-assembled composite floors. The present study investigates a novel screwed steel–aluminium foam–steel (SSAFS) sandwich panel. This paper mainly describes and discusses the results of experimental tests devoted to evaluating the structural performance, mechanical properties, and suitability for practical applications of SSAFS. The fabrication process and the detailing of the steel skins and aluminium foam core assembly are also described. The results from the experimental tests revealed the potentialities of using SSAFS sandwich panels in terms of strength and stiffness, thus making them suitable for lightweight structural systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call