Abstract

We study a cross-shaped cavity filled with superfluid $^4$He as a prototype resonant-mass gravitational wave detector. Using a membrane and a re-entrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-$Q$ acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of $8 \times 10^{-19}$ Hz$^{-1/2}$ to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz/bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for GWs in the 1-30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.