Abstract

Prototype methods seek a minimal subset of samples that can serve as a distillation or condensed view of a data set. As the size of modern data sets grows, being able to present a domain specialist with a short list of "representative" samples chosen from the data set is of increasing interpretative value. While much recent statistical research has been focused on producing sparse-in-the-variables methods, this paper aims at achieving sparsity in the samples. We discuss a method for selecting prototypes in the classification setting (in which the samples fall into known discrete categories). Our method of focus is derived from three basic properties that we believe a good prototype set should satisfy. This intuition is translated into a set cover optimization problem, which we solve approximately using standard approaches. While prototype selection is usually viewed as purely a means toward building an efficient classifier, in this paper we emphasize the inherent value of having a set of prototypical elements. That said, by using the nearest-neighbor rule on the set of prototypes, we can of course discuss our method as a classifier as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.