Abstract

The High-Luminosity Large Hadron Collider (HL-LHC) will deliver more than ten times the integrated luminosity of the previous runs combined. Meeting its stricter throughput requirements poses new challenges to the Trigger and Data Acquisition (TDAQ) systems of the LHC experiments. Introduced in the framework of the ATLAS experiment’s HL upgrade, the Global Trigger (GT) is a new subsystem which will perform offline-like algorithms on full-granularity calorimeter data. The implementation of the GT’s functionality is firmware-focused and is composed of three layers: multiplexing (or data aggregating), global event processing, and demultiplexing interface to the central trigger processor. Each layer will be composed of several, similar nodes, hosted on replicas of identical hardware, the Global Common Module (GCM), an ATCA front board which is designed to be adopted throughout the entire GT subsystem. This article proceeds from the TWEPP 2021 conference and presents the GCM hardware design, performed in 2020, and focuses on some key results of its extensive testing performed in 2021.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.