Abstract

At our institute a total artificial heart is being developed. It is directly actuated by a linear drive in between two ventricles, which comprise membranes to separate the drive and blood flow. A compliance chamber (CC) is needed to reduce pressure peaks in the ventricles and to increase the pump capacity. Therefore, the movement of the membrane is supported by applying a negative pressure to the air volume inside the drive unit. This study presents the development of the implantable CC which is connected to the drive unit of the total artificial hearts (TAH). The anatomical fit of the CC is optimized by analyzing CT data and adapting the outer shape to ensure a proper fit. The pressure peaks are reduced by the additional volume and the flexible membrane of the CC. The validation measurements of change in pressure peaks and flow are performed using the complete TAH system connected to a custom mock circulation loop. Using the CC, the pressure peaks could be damped below 5 mm Hg in the operational range. The flow output was increased by up to 14.8% on the systemic side and 18.2% on the pulmonary side. The described implantable device can be used for upcoming chronic animal trials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call