Abstract
Magnetic field-free, nonvolatile magnetic memory with low power consumption is highly desired in information technology. In this work, we report a current-controllable alignment of magnetic domain walls in a single layer La0.67Sr0.33MnO3 thin film with the threshold current density of 2 × 105 A/cm2 at room temperature. The vector relationship between current directions and domain-wall orientations indicates the dominant role of spin-orbit torque without an assistance of external magnetic field. Meanwhile, significant planar Hall resistances can be readout in a nonvolatile way before and after the domain-wall reorientation. A domain-wall-based magnetic random-access memory (DW-MRAM) prototype device has been proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.