Abstract
This paper presents the modeling, design, and novel control strategy development for a hybrid switched-capacitor bidirectional dc/dc converter, applicable for a hybrid electric vehicle energy storage system. The proposed control strategy is based on the power profile of the traction motor and the gradient of battery current. Features of voltage step-down, voltage step-up, and bidirectional power flow are integrated into a single circuit, and are verified on an experimental prototype. The developed control strategy enables simpler dynamics, compared to a standard buck converter with input filter, good regulation capability, low EMI, lower source current ripple, ease of control, and continuous input current waveform in both buck and boost modes of operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.