Abstract

In this article we extend the (recently published) unsupervised information theoretic vector quantization approach based on the Cauchy–Schwarz-divergence for matching data and prototype densities to supervised learning and classification. In particular, first we generalize the unsupervised method to more general metrics instead of the Euclidean, as it was used in the original algorithm. Thereafter, we extend the model to a supervised learning method resulting in a fuzzy classification algorithm. Thereby, we allow fuzzy labels for both, data and prototypes. Finally, we transfer the idea of relevance learning for metric adaptation known from learning vector quantization to the new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.