Abstract

Context. Weak and compact radio continuum and H2O masers are preferred tracers of the outflow activity nearby very young stars. Aims. We want to image the centimeter free–free continuum emission in the range 1–7 cm (26–4 GHz), which arises in the inner few 1000 au from those young stars also associated with bright H2O masers. We seek to study the radio continuum properties in combination with the H2O maser kinematics to quantify the outflow energetics powered by single young stars. Methods. We made use of the Karl G. Jansky Very Large Array (VLA) in the B configuration at K band and the A configuration at both Ku and C bands in order to image the radio continuum emission toward 25 H2O maser sites with an angular resolution and thermal rms on the order of 0.′′1 and 10 μJy beam−1, respectively. These targets add to our pilot study of 11 maser sites previously presented. The sample of H2O maser sites was selected among those regions that have accurate distance measurements, obtained through maser trigonometric parallaxes, and H2O maser luminosities in excess of 10−6 L⊙. Results. We present high-resolution radio continuum images of 33 sources belonging to 25 star-forming regions. In each region, we detect radio continuum emission within a few 1000 au of the H2O masers’ position; 50% of the radio continuum sources are associated with bolometric luminosities exceeding 5 × 103 L⊙, including W33A and G240.32 + 0.07. We provide a detailed spectral index analysis for each radio continuum source, based on the integrated fluxes at each frequency, and produce spectral index maps with the multifrequency synthesis deconvolution algorithm of CASA. The radio continuum emission traces thermal bremsstrahlung in (proto)stellar winds and jets that have flux densities at 22 GHz below 3 mJy and spectral index values between − 0.1 and 1.3. We prove a strong correlation (r > 0.8) between the radio continuum luminosity (Lrad) and the H2O maser luminosity (LH2O) of (L8 GHz∕mJy kpc2) = 103.8 × (LH2O L⊙)0.74. This power-law relation is similar to that between the radio continuum and bolometric luminosities, which confirms earlier studies. Since H2O masers are excited through shocks driven by (proto)stellar winds and jets, these results provide support to the idea that the radio continuum emission around young stars is dominated by shock ionization, and this holds over several orders of magnitude of stellar luminosites (1–105 L⊙).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.