Abstract

Organohalogens, a class of molecules that contain at least one halogen atom bonded to carbon, are abundant on the Earth where they are mainly produced through industrial and biological processes 1 . Consequently, they have been proposed as biomarkers in the search for life on exoplanets 2 . Simple halogen hydrides have been detected in interstellar sources and in comets, but the presence and possible incorporation of more complex halogen-containing molecules such as organohalogens into planet-forming regions is uncertain 3,4 . Here we report the interstellar detection of two isotopologues of the organohalogen CH3Cl and put some constraints on CH3F in the gas surrounding the low-mass protostar IRAS 16293–2422, using the Atacama Large Millimeter/submillimeter Array (ALMA). We also find CH3Cl in the coma of comet 67P/Churyumov–Gerasimenko (67P/C-G) by using the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. The detections reveal an efficient pre-planetary formation pathway of organohalogens. Cometary impacts may deliver these species to young planets and should thus be included as a potential abiotical production source when interpreting future organohalogen detections in atmospheres of rocky planets. Chloromethane (CH3Cl) has been observed towards a low-mass protostar and comet 67P, making it the first organohalogen detected in space. The species was previously considered to be a biomarker, but the authors suggest viable alternative abiotic formation routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.