Abstract

In most organisms, heme biosynthesis is strictly controlled so as to avoid heme and heme precursor accumulation, which is toxic. Escherichia coli regulates heme biosynthesis by a feedback loop involving heme-induced proteolytic cleavage of HemA, glutamyl-tRNA reductase, which is the first enzyme in the heme biosynthetic pathway. We show here that heme homeostasis can be disrupted by overproduction of YfeX, a cytoplasmic protein that captures iron from heme that we named deferrochelatase. We also show that it is disrupted by iron chelation, which reduces the intracellular iron concentration necessary for loading iron into protoporphyrin IX (PPIX, the immediate heme precursor). In both cases, we established that there is an increased PPIX concentration and we demonstrate that this compound is expelled by the MacAB-TolC pump, an efflux pump involved in E. coli and Salmonella for macrolide efflux. The E. coli macAB and tolC mutants accumulate PPIX and are sensitive to photo-inactivation. The MacAB-TolC pump is required for Salmonella typhimurium survival in macrophages. We propose that PPIX is an endogenous substrate of the MacAB-TolC pump in E. coli and S. typhimurium and that this compound is produced inside bacteria when natural heme homeostasis is disrupted by iron shortage, as happens when bacteria invade the mammalian host.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.