Abstract

Porphyrins and their derivatives have been widely used in catalysis, energy conversion, photonics, and biomedicine; however, their use in biological applications is restricted by their limited solubility in aqueous systems. We have prepared a water-soluble copolymer containing moieties of naturally occurring protoporphyrin IX using direct copolymerization of a poly(ethylene glycol) (PEG) methacrylate monomer with protoporphyrin IX via free-radical polymerization. The content of protoporphyrin IX in the copolymer was determined by 1H NMR and UV–vis absorption spectroscopies. Their solution properties and the photostability of the protoporphyrin IX moiety in the copolymer provide direct evidence of the covalent incorporation of protoporphyrin IX within the copolymer. The copolymer showed a reversible phase transition in aqueous solution due to the lower critical solution temperature (LCST). The phase transition temperature varies with the pH of the solutions because of the protonation of the carboxylic acid groups. This copolymer may be useful as an alternative thermoresponsive material for biomedical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.