Abstract
Cannabis sativa L. is a valuable, up-and-coming industrial crop with a substantially growing market. However, due to an extended period of legal restriction, research with cannabis has been limited, particularly in laboratory settings. Expanding the application of biotechnological techniques to cannabis can facilitate addressing species-specific impediments to improving crop traits and further fundamental understanding of its intricacies. Here, we describe application of protoplast transformation for the study of transient gene expression in a low-THC cannabis cultivar. To produce explant tissue as a source of protoplasts, a method for hormone-free in vitro micropropagation is established. Protoplasts are isolated from young leaves of the micropropagated stocks and transiently transformed with plasmid DNA carrying a fluorescent marker gene. This is the first report of protoplast transformation in this species. A protoplast isolation yield is achieved of up to 2 × 106 cells per gram of leaf material, vitality staining shows that up to 82 % of isolated protoplasts are viable, and quantification of the cells expressing a fluorescent protein indicates that up to 31 % of the cells can be successfully transformed. Additionally, protoplasts are transformed with an auxin-responsive reporter gene and the reaction to treatment with indole-3-acetic acid is quantified using flow cytometry. This work demonstrates that relatively minor modification of standard techniques can be used to study this important emerging crop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.