Abstract

The Earth is known to be depleted in volatile lithophile elements in a fashion that defies easy explanation. We resolve this anomaly with a model that combines the porosity of collisionally grown dust grains in protoplanetary disks with heating from FU Orionis events that dramatically raise protoplanetary disk temperatures. The heating from an FU Orionis event alters the aerodynamical properties of the dust while evaporating the volatiles. This causes the dust to settle, abandoning those volatiles. The success of this model in explaining the elemental composition of the Earth is a strong argument in favor of highly porous collisionally grown dust grains in protoplanetary disks outside our Solar System. Further, it demonstrates how thermal (or condensation based) alterations of dust porosity, and hence aerodynamics, can be a strong factor in planet formation, leading to the onset of rapid gravitational instabilities in the dust disk and the subsequent collapse that forms planetesimals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.