Abstract
The kinetics of the proton-transfer reactions between 1-nitro-1-(4-nitrophenyl)ethane (NNPE(H(D))) and hydroxide ion in water/acetonitrile (50/50 vol %) were studied at temperatures ranging from 289 to 319 K. The equilibrium constants for the reactions are large under these conditions, ensuring that the back reaction is not significant. The extent of reaction/time profiles during the first half-lives are compared with theoretical data for the simple single-step mechanism and a 2-step mechanism involving initial donor/acceptor complex formation followed by unimolecular proton transfer and dissociation of ions. In all cases, the profiles for the reactions of both NNPE(H) and NNPE(D) deviate significantly from those expected for the simple single-step mechanism. Excellent fits of experimental data with theoretical data for the complex mechanism, in the pre-steady-state time period, were observed in all cases. At all base concentrations (0.5 to 5.0 mM) and at all temperatures the apparent kinetic isotope effects (KIE(app)) were observed to increase with increasing extent of reaction. Resolution of the kinetics into microscopic rate constants at 298 K resulted in a real kinetic isotope effect (KIE(real)) for the proton-transfer step equal to 22. Significant proton tunneling was further indicated by the temperature dependence of the rate constants for proton and deuteron transfers: KIE(real) ranging from 17 to 26, E(a)(D) -- E(a)(H) equal 2.8 kcal/mol, and A(D)/A(H) equal to 4.95.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.