Abstract

The excited-state decay kinetics of single 2',7'-dichlorofluorescein (DCF) molecules oriented and overgrown within crystals of potassium acid phthalate (KAP) are reported. Time-correlated single-photon counting measurements (TCSPC) of 56 DCF molecules in KAP reveal that single-exponential decay is exhibited by roughly half of the molecules. The remainder demonstrates complex excited-state decay kinetics that are well fit by a stretched exponential function consistent with dispersed kinetics. Histograms of single-molecule luminescence energies revealed environmental fluctuations and distinct chemical species. The TCSPC results are compared to Monte Carlo simulations employing a first-passage model for excited-state decay. Agreement between experiment and theory, on both bulk and single-molecule levels, suggests that a subset of the DCF molecules in KAP experience fluctuations in the surrounding environment that modify the energy barrier to proton transfer leading to dispersed kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call