Abstract
Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopic technique that is used for characterization of molecular properties in the solid phase at atomic resolution. In particular, using the approach of magic-angle spinning (MAS), ssNMR has seen widespread applications for topics ranging from material sciences to catalysis, metabolomics, and structural biology, where both isotropic and anisotropic parameters can be exploited for a detailed assessment of molecular properties. High-resolution detection of protons long represented the holy grail of the field. With its high natural abundance and high gyromagnetic ratio, 1H has naturally been the most important nucleus type for the solution counterpart of NMR spectroscopy. In the solid state, similar benefits are obtained over detection of heteronuclei, however, a rocky road led to its success as their high gyromagnetic ratio has also been associated with various detrimental effects. Two exciting approaches have been developed in recent years that enable proton detection: After partial deuteration of the sample to reduce the proton spin density, the exploitation of protons could begin. Also, faster MAS, nowadays using tiny rotors with frequencies up to 130 kHz, has relieved the need for expensive deuteration. Apart from the sheer gain in sensitivity from choosing protons as the detection nucleus, the proton chemical shift and several other useful aspects of protons have revolutionized the field. In this Account, we are describing the fundamentals of proton detection as well as the arising possibilities for characterization of biomolecules as associated with the developments in our own lab. In particular, we focus on facilitated chemical-shift assignment, structure calculation based on protons, and on assessment of dynamics in solid proteins. For example, the proton chemical-shift dimension adds additional information for resonance assignments in the protein backbone and side chains. Chemical shifts and high gyromagnetic ratio of protons enable direct readout of spatial information over large distances. Dynamics in the protein backbone or side chains can be characterized efficiently using protons as reporters. For all of this, the sample amounts necessary for a given signal-to-noise have drastically shrunk, and new methodology enables assessment of molecules with increasing monomer molecular weight and complexity. Taken together, protons are able to overcome previous limitations, by speeding up processes, enhancing accuracies, and increasing the accessible ranges of ssNMR spectroscopy, as we shall discuss in detail in the following. In particular, these methodological developments have been pushing solid-state NMR into a new regime of biological topics as they realistically allow access to complex cellular molecules, elucidating their functions and interactions in a multitude of ways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.