Abstract
Reformative exploitation for metal organic frameworks (MOFs) has been a topic subject in electrochemical sensing, in which the loading of electroactive species is always introduced to enable them to generate electrochemical signal. However, insulation shielding of MOFs and flimsy combination method interfere with the signal readout of electroactive dyes when they are co-immobilized on electrode surface, indicating that an amelioration is imperatively proposed to solve these issues. Herein, a proton-activated annunciator for responsive release of methylene blue (MB) based on i-motif DNA structure modified UIO-66-NH2 was presented to design electrochemical immunosensor (Squamous cell carcinoma antigen was used as the model analyte). With the catalysis of a ZIF-8 immunoprobe contained glucose oxidase (GOx) to glucose in test tube, protons are produced in ambient solution and then they can be used as the key to unlock the i-motif functionalized UIO-66-NH2, releasing the loaded MB molecules to be readout on an improved electrode. This stimuli-responsive mode not merely eliminates the insulation effect of MOFs but also provides a firm loading method for electroactive dyes. Under the optimal conditions, the proposed immunoassay for SCCA had displayed excellent performance with a wide linear range from 1 µg mL−1 to 1 pg mL−1 and an ultralow detection limit of 1.504 fg mL−1 (S/N = 3) under the optimal conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.