Abstract

A set of β-ketoimidazolium and β-ketoimidazolinium salts of the general formula [R(1)C(O)CH2{CH[NCR(3)CR(3)N(R(2))]}]X (R(1) = (t)Bu, naphth; R(2) = (i)Pr, Mes, (t)Bu; R(3) = H, Me, (H)2; X = Cl, Br) show contrasting reactivity with superhydride bases MHBEt3; two are reduced to chiral β-alcohol carbene-boranes R(1)CH(OH)CH2{C(BEt3)[NCR(3)CR(3)N(R(2))]} 2 (R(1) = (t)Bu; R(2) = (i)Pr, Mes; R(3) = H), two with bulky R(2) substituents are reduced to chiral β-borate imidazolium salts [R(1)CH(OBEt3)CH2{CH[NCR(3)CR(3)N(R(2))]}]X 3 (R(1) = (t)Bu, naphth; R(2) = Mes, (t)Bu; R(3) = H, Me; X = Cl, Br), and the two saturated heterocycle derivatives remain unreduced but form carbene-borane adducts R(1)C(O)CH2{C(BEt3)[NCR(3)CR(3)N(R(2))]} 4 (R(1) = (t)Bu, naphth; R(2) = Mes; R(3) = (H)2). Heating solutions of the imidazolium borates 3 results in the elimination of ethane, in the first example of organic borates functioning as Brønsted bases and forming carbene boranes R(1)CH(OBEt2)CH2{C[NCR(3)CR(3)N(R(2))]} 5 (R(1) = naphth; R(2) = Mes; R(3) = Me). The 'abnormal' carbene borane of the form 2 R(1)CH(OH)CH2{CH[NC(BEt3)CR(3)N(R(2))]} (R(1) = (t)Bu; R(2) = (t)Bu; R(3) = H), is also accessible by thermolysis of 3, suggesting that the carbene-borane alcohol is a more thermodynamically stable combination than the zwitterionic imidazolium borate. High-temperature thermolysis also can result in complete cleavage of the alcohol arm, eliminating tert-butyloxirane and forming the B-N bound imidazolium borate 7. The strong dependence of reaction products on the steric and electronic properties of each imidazole precursor molecule is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call