Abstract
Electrolytes consisting of methylcellulose/potato starch blend incorporated with ammonium nitrate (NH4NO3) are prepared by solution cast method. Field emission scanning electron microscopy (FESEM) discovers that methylcellulose and starch are miscible. Cation transference number (tcat) of the highest conducting electrolyte is discovered to be 0.40. Linear sweep voltammetry (LSV) show that the electrolyte is stable in the voltage range of 1.50 to 1.88 V from 298 to 343 K. Protonic conduction in the electrolyte has been further proven via cyclic voltammetry using both reversible Zn + ZnSO4·7H2O and blocking stainless steel electrodes. The open circuit voltage (Voc) of the protonic cell is lasted for 24 h at 1.52 V. The value of Voc is inversely proportional to the temperature. The maximum capacity, internal resistance, and power density of the protonic cell at 343 K are found to be 42 mA h, 17 Ω, and 13.5 mW cm−2, respectively. Rechargeability of the protonic cell has been examined for 15 cycles at different constant current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.