Abstract

To investigate a possible coupling between P680+ reduction and hydrogen transfer, we studied the effects of H2O/D2O exchange on the P680+ reduction kinetics in the nano- and microsecond domains. We concentrated on studying the period-4 oscillatory (i.e., S-state-related) part of the reduction kinetics, by analyzing the differences between the P680+ reduction curves, rather than the full kinetics. Earlier observations that P680+ reduction kinetics have microsecond components were confirmed: the longest observable lifetime whose amplitude showed period-4 oscillations was 30 microseconds. We found that solvent isotope exchange left the nanosecond phases of the P680+ reduction unaltered. However, a significant effect on the oscillatory microsecond components was observed. We propose that, at least in the S0/S1 and S3/S0 transitions, hydrogen (proton) transfer provides an additional decrease in the free energy of the YZ+P680 state with respect to the YZP680+ state. This implies that relaxation of the state YZ+P680 is required for complete reduction of P680+ and for efficient water splitting. The kinetics of the P680+ reduction suggest that it is intraprotein proton/hydrogen rearrangement/transfer, rather than proton release to the bulk, which is occurring on the 1-30 microseconds time scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.