Abstract

Neutrino-driven winds are thought to accompany the Kelvin-Helmholtz cooling phase of nascent protoneutron stars in the first seconds after a core-collapse supernova. These outflows are a likely candidate as the astrophysical site for rapid neutron-capture nucleosynthesis (the r-process). In this chapter we review the physics of protoneutron star winds and assess their potential as a site for the production of the heavy r-process nuclides. We show that spherical transonic protoneutron star winds do not produce robust r-process nucleosynthesis for ‘canonical’ neutron stars with gravitational masses of 1.4 M⊙ and coordinate radii of 10 km.We further speculate on and review some aspects of neutrino-driven winds from protoneutron stars with strong magnetic fields.Keywordsnuclear reactionsnucleosynthesisabundances—stars: magnetic fields—stars: windsoutflows—stars: neutron—supernovae: general

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.