Abstract

Water contamination by heavy metals from industrial activities is a serious environmental concern. To mitigate heavy metal toxicity and to recover heavy metals for recycling, biomaterials used in phytoremediation and bio-sorbent filtration have recently drawn renewed attention. The filamentous protonemal cells of the moss Funaria hygrometrica can hyperaccumulate lead (Pb) up to 74% of their dry weight when exposed to solutions containing divalent Pb. Energy-dispersive X-ray spectroscopy revealed that Pb is localized to the cell walls, endoplasmic reticulum-like membrane structures, and chloroplast thylakoids, suggesting that multiple Pb retention mechanisms are operating in living F. hygrometrica. The main Pb-accumulating compartment was the cell wall, and prepared cell-wall fractions could also adsorb Pb. Nuclear magnetic resonance analysis showed that polysaccharides composed of polygalacturonic acid and cellulose probably serve as the most effective Pb-binding components. The adsorption abilities were retained throughout a wide range of pH values, and bound Pb was not desorbed under conditions of high ionic strength. In addition, the moss is highly tolerant to Pb. These results suggest that the moss F. hygrometrica could be a useful tool for the mitigation of Pb-toxicity in wastewater.

Highlights

  • Water is essential for all living organisms on earth

  • We focused on Funaria hygrometrica, a moss that is often seen growing on metal-enriched substrates, such as mine sites contaminated with Cu, zinc (Zn), lead (Pb) and other heavy metals [17, 18], or in places recovering from wild fires [19, 20]

  • We collected sporophytes, allowed the spores to germinate on agar plates (Fig 1B), and established a suspension culture of protonemal cells derived from a single spore (Fig 1C)

Read more

Summary

Introduction

Water is essential for all living organisms on earth. Humans do ingest water, but use it for agriculture and industrial activities. Water contamination with heavy metals from human industrial activities is a serious environmental concern. If polluted water enters drinking and agricultural water systems, heavy metals may cause serious toxicity to organisms [1]. To remove heavy metals from contaminated water, various methods and remediation materials have been developed and are widely used in current industrial procedures (e.g. chemical sedimentation, electro deposition, activated charcoal, ion-exchange resins, chelating resins).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call