Abstract

Reduction of carbonyls by SmI2 is significantly impacted by the presence of water, but the fundamental step(s) of initial transfer of a formal hydrogen atom from the SmI2-water reagent system to produce an intermediate radical is not fully understood. In this work, we provide evidence consistent with the reduction of carbonyls by SmI2-water proceeding through proton-coupled electron transfer (PCET). Combined rate and computational studies show that a model aldehyde and ketone are likely reduced through an asynchronous PCET, whereas reduction of a representative lactone occurs through a concerted PCET. In the latter case, concerted PCET is likely a consequence of significantly endergonic initial electron transfer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.