Abstract

Abstract Proton-conductive electrolytes are key materials in fuel cells. We introduced acidic functional groups into a porous coordination polymer (PCP), or metal–organic framework (MOF), and constructed proton-conductive PCP/MOFs. To achieve this, a novel synthetic method for introducing acidic groups in PCP/MOF was invented. The proton conductivities of various PCP/MOF materials were investigated by AC impedance spectroscopy, and some of the materials showed high proton conductivity up to 8 × 10−3 S cm−1 at ambient temperature. We also investigated the dependency of proton conductivity on functional groups and found a relationship between proton conductivity, the acidity of the functional groups, and the hydrogen-bond networks formed inside the pores of PCP/MOFs. These PCP/MOF materials have high crystallinity, and the frameworks and arrangement of guests in the inner pore were clearly determined by X-ray crystallographic analysis. The relationship between proton conductivity and hydrogen-bond networks was investigated. This study thus establishes a novel field for investigating highly proton-conductive materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.