Abstract

Supramolecular gels originating from the hierarchical self-assembly of low molecular weight organic molecules is a strongly emerging field of advanced material research for the fabrication of soft functional materials. Herein, a novel supramolecular gel was fabricated through the protonation-triggered unidirectional self-assembly of pyridine-attached macrocyclic diacetylene (PyMCDA). Basic nitrogen of a pyridine ring with a strong affinity toward proton transforms the neutral PyMCDA into gelator in its protonated pyridinium salt form (PyMCDA-H+), which further evolves to nano-fibrillar networks to yield a supramolecular gel. Under the irradiation of UV light, the white color gel turned to a robust covalently cross-linked blue-phase PDA gel. Interestingly, polymeric PyMCPDA-H+ gel exhibits a naked-eye detectable reversible blue-red colorimetric response for alternating acid/base (H2SO4/NH4OH) and colorimetric sensitivity toward selected anions: CH3COO-, CN-, HCOO-, and CH3CH2COO-. It is with the hope that this work point toward the utility and versatility of macrocyclic PDAs for constructing chromogenic supramolecular gels for their possible use in sensing systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.