Abstract

When supercoiled DNA is incubated with Fe(II) at pH 7 in the presence of hydrogen peroxide, the rate of nicking first increases with increasing H2O2 concentration to reach a maximum, then decreases and eventually increases again. When 0.1 mM histidine is added at neutral pH at low H2O2 concentration (< 3 mM), it hinders the nicking of DNA; when it is added at high H2O2 concentrations (> 10 mM), it enhances the rate of nicking. When similar experiments are performed at slightly acidic pH (4.5) the biphasic behavior is maintained, independent of the presence of histidine. One can conclude that the protonation of imidazole (pK = 5.9) abolishes the capability of histidine to modulate the oxidative degradation of DNA. Results of electron spin resonance experiments suggest that at low H2O2 concentration, the protective effect of histidine could be the consequence of its capability to bind OH. radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.