Abstract
ESI-protonated natural curcumin (1) undergoes gas-phase cyclization and dissociates via competitive expulsions of 2-methoxy phenol and C4H4O2 (diketene or an isomer). Evidence from mechanistic mass spectrometry and from Density Functional Theory (DFT) reveals that a two-step sequential cyclization occurs for the protonated molecule prior to the unusual loss of the elements of 2-methoxy phenol. Furthermore, the presence of the methoxy group at postion-3 is essential for the second cyclization. The transformation of curcumin upon protonation in the gas phase may be predictive of its solution chemistry and explain how curcumin plays a protective role in biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.